Estimation of the individual firing frequencies of two neurons recorded with a single electrode.

نویسندگان

  • Nicolas Meunier
  • Frédéric Marion-Poll
  • Petr Lansky
  • Jean Pierre Rospars
چکیده

When monitoring neurons with a single extracellular electrode, it is common to record action potentials from different neurons. A recurring problem with such recordings is to identify which neuron is active. Sorting spikes into separate classes is possible if each neuron discharge spikes differing by their shapes and sizes. However, this approach is not applicable when the spikes are indistinguishable. In this paper, we develop a method for estimating the respective firing frequencies of two neurons, producing indistinguishable spikes. It is based on the fact that, when a neuron fires a spike, there is an interval of time during which the probability of generating a second spike is very low. If a spike occurs during this 'silent period', it is likely to be generated from another neuron and the number of occurrences of such 'doublets' can be used to estimate the respective frequencies of two spike trains. We demonstrate here that a simple relation holds between the frequency of doublets d, the respective frequencies of the two neurons A and B, fA and fB, and a chosen value Delta shorter than the silent period, d=2fAfBDelta. This relation holds for a wide class of firing processes. We used this method to analyze responses from Drosophila taste sensilla. We first checked if the method was consistent with results obtained with stimuli that elicit responses of two taste neurons firing distinguishable spikes. We then applied this method to the study of a pair of taste neurons involved in the coding for salt taste in Drosophila melanogaster.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Responses of primary somatosensory cortical neurons to controlled mechanical stimulation.

The results of psychophysical studies suggest that displacement velocity may contribute significantly to the sensation of subcortical somatosensory neurons. The cortical correlates of these phenomena, however, are not known. In the present study the responses of rapidly adapting (RA) neurons in the forelimb region of cat primary somatosensory cortex (SI) to controlled displacement of skin and h...

متن کامل

Effect of aqueous extract of Drosera Spatulata on firing rate of paragigantocellularis nucleus neurons after pain induction by formalin in rats

Introduction: Previously, we demonstrated that i.p. injection of aqueous extract prepared from aerial parts of Drosera Spatulata (Droseraceae) can induced remarkable analgesia in both phases of formalin test in rats. Because, analgesia induced in acute phase of formalin test mainly mediated by activation of central analgesic mechanisms and also paragigantocellularis (PGi) nucleus is part of bra...

متن کامل

Functional Interaction between the Shell Sub-Region of the Nucleus Accumbens and the Ventral Tegmental Area in Response to Morphine: an Electrophysiological Study

This study has examined the functional importance of nucleus accumbens (NAc)-ventral tegmental area (VTA) interactions. As it is known, this interaction is important in associative reward processes. Under urethane anesthesia, extracellular single unit recordings of the shell sub-region of the nucleus accumbens (NAcSh) neurons were employed to determine the functional contributions of the VTA to...

متن کامل

The firing rate of neurons in the nucleus cuneiformis in response to formalin in male rat

Introduction: Although formalin-induced activity in primary afferent fibers and spinal dorsal ‎horn is well described, the midbrain neural basis underlying each phase of behavior in ‎formalin test has not been clarified. The present study was designed to investigate the nucleus ‎cuneiformis (CnF)‎‏ ‏neuronal responses during two phases after subcutaneous injection of ‎formalin into the hind paw...

متن کامل

Effects of Memantine on the Spontaneous Firing Frequency of Hippocampal CA1 Pyramidal Neurons in Intact and Alzheimer Rat Model: An Electrophysiological Study

Introduction: Memantine (MEM) is a noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist clinically used for the treatment of Alzheimer disease (AD) in mild to severe conditions. The present study was conducted to investigate the effects of memantine on the spontaneous firing frequency of CA1 pyramidal neurons in rats caused by an electrical lesion of Nucleus Basalis Magnocellularis (...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemical senses

دوره 28 8  شماره 

صفحات  -

تاریخ انتشار 2003